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Abstract—The rapid melting and solidification of a target material was studied. The enthalpy technique
was used in an explicit finite difference form to calculate the location of the solid-liquid interface and the
temperature distribution in the target. The technique was modified so that it is not necessary that the
temperature of the mesh containing the interface remain constant at the melting point. Instead, by using
the energy boundary condition at the interface a new value of the temperature of the grid point is calculated
at every time step. The materials between two grid points that are on each side of the interface consist of
two phases with considerably different thermal conductivities. The thermal resistances of the material
between these grid points were calculated by treating the region as a composite material. The effects of the
duration, the temporal shape and the intensity of the laser pulse on the rate of propagation of the phase
change and on the temperature distribution were studied. The results of the numerical prediction for the
melt depth created in an aluminum target with a 100 ms electron beam were compared with experimental
data and good agreement was obtained,

INTRODUCTION

THE DETERMINATION of the heat transfer during a
solid-liquid change of phase is of importance in prob-
lems relative to welding, coating, crystal growth,
environmental engineering and chemical analysis. In
many cases multidimensional variations are impor-
tant, boundary conditions are complex, thermo-
physical properties vary with temperature and phase,
volumetric heat sources may be present, and several
mechanisms of heat transfer may take place. Thus
analytical solutions [1-4] which exist for specific prob-
lems have a limited range of applicability. In order to
solve these problems numerical methods are usually
required.

A large number of numerical techniques have been
developed to solve solid-liquid phase change prob-
lems. Extensive reviews of many analytical and
numerical technigues can be found in Ockendon and
Hodgkins [3], Shamsundar {5] and Salcudean and
Abdullah {6]. The numerical methods used may be
conveniently divided into two groups. In the first
group the temperature is the only dependent variable
and the enmergy conservation equations are written
separately for the solid and the liquid regions. The
major difficulty with this technique arises from the
need to track a continuously moving phase change
interface. The rate of propagation of this boundary
into the solid region (melting) or into the liquid region
(solidification) depends on the temperature gradients
on both sides of the boundary, which are unknown a
priori. Various procedures have been developed to
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deal with this problem, including moving grid points
and isotherm migration [3, 7-10}. In the second group,
known as the enthalpy method, both the enthalpy and
the temperature are used as dependent variables in the
energy equation. The resulting equation is applicable
at all the grid points in the solid and in the liquid
regions as well as those containing the solid-liquid
interface. Carslaw and Jaeger [2] and Shamsundar
and Sparrow [l1] demonstrated the equivalence
between the enthalpy formulation and the conduction
energy equation assuming equal densities for both
phases. In the conventiona! enthalpy method the
solid-liquid energy boundary condition is not utilized
and the problem reduces to one of nonlinear heat
conduction. The location of the phase change inter-
face is determined from the calculated enthalpies.

The enthalpy method is reasonably accurate for
metals which undergo a change of phase over a tem-
perature range. However, for materials with a change
of phase which takes place at a single temperature,
the enthalpy method is inaccurate in the region near
the phase front. Voller e al. [12, 13] used the enthalpy
method for water, and showed that (i) the calculated
phase change boundary moved in an oscillatory
fashion and (ii) the temperature history contained a
number of plateaus. These nonphysical features
resulted for water because of the large value of the
ratio of the latent heat to the change in enthalpy of
the sensible heat. Voller and Cross [13]} and Tacke [14]
have proposed techniques to improve the accuracy of
the enthalpy formulation. A review of the enthalpy
formulation can be found in refs. [11, 15].

In a study of rapid melting and solidification during
pulsed laser heating, Hsu er al [16] employed an
enthalpy formulation similar to that used by Sham-
sundar and Sparrow [11]. The temperature history of

2161



2162

A. A. RosTaMI et al.

a  thermal diffusivity [m?s™"']

b defined by equation (A1)

¢ specific heat [JTkg™ 'K "]

e  specific enthalpy [Jkg™']

g  rate of heat generation [Wm™ -]

h  defines the beam temporal shape

[dimensionless]

I, beam intensity at the center [Wm™?]

. beam intensity inside the target [Wm™?]

beam intensity incident on the surface

[Wm~?|

k  thermal conductivity [Wm™'K ']

L latent heat of fusion [J kg™ ']

g. absorbed energy flux, /,(1—R) [Wm™7]
; radial distance [m] ; reflectivity

S solid-liquid interface location [m)]

time ; pulse duration [s]

T  temperature [K]

w  beam radius [m]

x  mass fraction of the liquid phase

[dimensionless]

axial distance [m].

8]

Greek symbols
o  absorption coefficient [m™']

NOMENCLATURE

3,  thermal diffusion length, 2,/(a,7,) [m]

g surface emissivity

p  density [kgm™?]

¢ Stefan-Boltzmann constant [Wm™ 2K 4.

Subscripts

av  average
boiling
east side (Fig. 17)
initial
refers to region 1, 2, or 3
liquid
melting
ml  defined in Fig. 2
defined in Fig. 2
north side (Fig. 17)
center (Fig. 17)
defined in the Appendix
solid ; south side (Fig. 17)
west side (Fig. 17)
region |
region 2.

b
e
i
J
1
m
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the target was not presented in the paper of Hsu et
al. [16] and therefore it is not possible to determine
whether temperature plateaus were obtained as were
reported by Voller er al. [12, 13]. However, since it is
assumed that the grid point temperature remains at
the melting point during the period of time that the
melt front is traveling through the corresponding
mesh, temperature plateaus presumably did exist. The
period of time during which the temperature of each
grid point remains constant depends on the size of the
mesh. For a mesh size in the direction of the laser
beam that is one tenth of the average thickness of
the melt layer created by one pulse, it would take
approximately 10% of the pulse duration for the inter-
face to pass across each mesh. During this time the
temperature of the corresponding mesh would remain
constant. Since the heat affected region may be much
larger than the depth of the melt, reducing the size of
the mesh would result in very large computer time and
storage requirements. Therefore, a modification to the
traditional enthalpy method seems appropriate.

In this study an explicit finite difference scheme
incorporating the enthalpy formulation was employed
to calculate the temperature distribution and the
location of the solid-liquid interface in a material
undergoing melting and solidification. The time range
considered in this work was from 1 ns to 100 ms. The
enthalpy method was modified by making use of the
following: (i) only a portion of the net energy trans-
ferred to a mesh is used for the phase change and the

rest is used for the sensible energy change, and (ii)
the thermal resistances between a grid point and the
neighboring points separated by the interface involve
two phases with different thermal conductivities. Note
that the thermal conductivities of liquid metals are
almost half of the values for the solid phase. For
aluminum, the thermal conductivities of the solid and
liquid at the melting point are 208 and 108 W m ™'
K ' respectively.

The problem studied in this work is that of two-
dimensional (axisymmetric) melting and solidification
of a substance resulting from the application of a
pulsed beam on its surface. The radiation absorbed is
included as a heat source whose strength varies with
time and position. The variation with temperature of
the thermophysical and the optical properties of the
target material are included in the calculations. It is
assumed that the surface temperature does not reach
the boiling temperature of the target material. The
model is applicable to substances that have a discrete
phase change temperature and also to those that
undergo a change in phase over a temperature range.

PROBLEM STATEMENT

A slab of the target material (see Fig. 1) is irradiated
over a circular region of its surface by a laser beam
of prescribed spatial and temporal distribution. The
radial and axial dimensions of the target are much
greater than the thermal diffusion length so that a
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Fig. 1. Physical model for the problem showing beam
irradiation.

thermally semi-infinite region is assumed. The intensity
of the beam is a maximum at the optical axis, r = 0,
and decreases radially and axially in the material. For
thermal analyses, a commonly used radial distribution
for lasers is the cylindrically symmetric Gaussian pro-
file {17]:

I(r,0) = Lh(t)e~ "D (1)

where A(#) < 1 describes the temporal variation of the
beam, which is a dimensionless quantity. If the inten-
sity of the incident beam does not vary with time,
h(f) = 1. The local radiation intensity within the target
matenal, /,, considering volumetric absorption and
surface reflection, may be written as

I =L{1-R)e™™. [0

It is pointed out that reflections at the solid-liquid
interface may be neglected because the absorption is
strong so that little radiation reaches the interface.
The energy absorbed may be represented as a heat
source within the material having a rate of heat gen-
eration per unit volume, g, given by [18]:

df

9==q, = al(1—R)e ™. 3

The diffusion equation may be written in terms of
enthalpy [11]. For two-dimensional transport with
heat generation the equation is given by

Lo, oT\, o, oT, de,
prn (kfr*é;‘>+ Fe (k; az>+gf =05 @

where ¢ is the enthalpy and j = 1,2 corresponds to
the regions shown in Fig. 1. For region 1, which is
usually air, g, =0 and p,(de,/dt) is replaced by
p.1¢,(0T,/01). Equation (4) is used for each discretized
spatial domain, which by appropriate substitution of
thermophysical properties will be valid regardless of
whether the domain is in the solid state, the liquid
state, or contains the solid—liquid interface. The inter-
face in this case is axisymmetric. At the interface the
following conditions hold [19]:
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where L is the latent heat of fusion of the target
material. Equation (6) represents the energy balance
across the phase boundary; i.e. z = S(r, 7). Note that
the complete energy balance across the phase bound-
ary would require two equations corresponding to
the axial and radial directions [19]. In this study the
interface is divided into a series of steps for each grid
point which are taken to be perpendicular to the z-
direction. Therefore the equation in the radial direc-
tion is not utilized.

The relationship between the enthalpy and tem-
perature is now considered. For a binary phase change
this variation is assumed to be a piecewise linear func-
tion within the mushy zone with a step function
change at the solid temperature, T, (see Fig. 2). The
enthalpy—temperature relations for any element that
is completely in the solid or in the liquid phase are
given as follows:

T

e, = j ¢, dT T< T, (7a)
Tms
T

e =J adT+L T>T,. (7b)
Tml

The solid state at the melting temperature is chosen
as the reference point with an enthalpy of zero. For a
mesh containing the interface the average enthalpy is
defined as

e = xe;+ {1 —x)e, &)

where x is the mass fraction of the mesh in the liquid
phase. By using an average value for the specific heat
and employing equations (7a) and (7b), equation (8)
is expressed as

e=xL+c[(T-Ty)+x(To— Tl 9)

e
uqud
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i
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>
Y

F1G. 2. Enthalpy-temperature relation.
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sent work the materials studied have a

chang of phase at a single temperature. Equations
(7a), (7b) and (9) may be used for this condition by
using Ty, = Ty = T,,. Note that by writing equation
(9) for a mesh (instead of a grid peint) it is possible
to obtain the phase change boundary at every time
step, as discussed later.

The initial condition for equation (4) is a uniform

temperature, 7 = T, everywhere. The boundary con-
ditions at the surface z = 0 are
T, =T, (10a)
k, %1; =k, %]; ~eo{T35—TH. {10b)
At the extreme boundaries the conditions are
z— o0, T, =T, (11a)
z—>—c0, T, =T, (11b)
From symmetry we have
eT aT
r=0, -5;‘: . -»672=0 (12)

Far from the axis of the beam, for any value of z, we

have

=T, =T, (13)
The location of the solid-liquid interface is obtained

from equation (6). The enthalpy and the temperature

are calculated from equations (4), (7) and (9).

¥ — 20,

NUMERICAL METHOD

The first step in the computational process is to
subdivide regions 1 and 2 into a number of small
elements. Figure 3 shows the pattern of the grid points
used in our calculations. The grid points are fixed in
space while the interface moves in the target. The grid
sizes used in the calculations were approximately
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from Az . ~35../m

irom Az, = Oy,

Az o~ 8 nd

B2y R Oty andg
Ar=ajn; 6, and d,, being the thermal diffusion lengths
in air and the target material at room temperature.
Values of m,=m, =50 and »n=10 were used
throughout the calculations. However, because of the
large range of the time periods from milliseconds to
microseconds, the grid sizes in the z-direction were
different for different cases. For example, for a milli-

second nulse Az, = Az

SULOT PIash Ll = Lo —

pulse Az, = Az, =04 pm, and for a nanosecond
pulse Az, = Az, = 0.012 pum were used. A radial spac-
ing of Ar = 10 um was used for all cases. The tem-
perature distribution and the melt pool size did not
change noticeably when the mesh was refined with a
factor of 1.5 for the millisecond case.

The finite difference form of equation (4) for the

3 1 i 1 in t ~] 4 far
internal grid points of region 2 in the explicit for-

mulation is given by

determined
agwerianeg

= 12 ym, for a microsecond

la 10— 1 )y +a,Th+1, j)+aly0, j+1)
+awT2(is j__ l) +apT2(l’ J) +appe2(i’ /) +b}

&

e j) =
PP

(14)

All the quantities on the right hand side of equation
(14) correspond to the previous time step, while
&5(i, j) corresponds to the new time. The coefficients
a,, a, a, and a. include the thermal resistances
between the grid points. Composite resistances are
accounted for due to the presence of two phases
between the grid points adjacent to the solid-liquid
interface. The coefficients a,, and 4, include the mass
and the specific heat of the element, respectively, and
b represents the heat generation within the element.
These coefficients are given in the Appendix. They are
calculated at every time step to account for the changes
in the thermophysical properties with temperature and

[+
¥

region 1

region 2 (target)

Fi1G. 3. Grid pattern used in the numerical solution.
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change of phase. The corresponding finite difference
equation for the surface element of the target, z =0, is

[ale(l+l,j)+anTZ(l+15])+aeT2(l3j+1)
PPTEN +awT2(i»j-1)+apT2(isj)+appe2(isj)+b]
eyl j) = a .
PP
(15)

Here, b includes the radiation heat loss to the sur-
roundings in addition to the heat generation inside
the element. The grid points at the surface of the
target represent elements containing materials of both
regions 1 and 2. In order to eliminate the ambiguity
concerning the definition of a single enthalpy for a
composite element, the mass of air in these elements is
neglected compared to the mass of the target material.
This assumption does not have a significant effect on
the accuracy of the results as long as the density of
material 1 (air in this example) is much smaller than
that of the target. For the internal grid points of
region 1, the conduction equation is written in a finite
difference form [18].

We apply the finite difference form of equation (6)
to the solid-liquid interface. Figure 4 shows the vol-
ume element (i, j) containing the interface and its
neighboring elements at time ¢. The interfacial surface
S at this time divides the average length of an internal
element into a liquid portion xAz and a solid portion
(1 —x)Az. After a small increment in time, At, the
interface moves to a new location S’, resulting in an
increase (melting) or decrease (solidification) of the
liquid portion. The new location of the interface can be
found from the finite difference form of equation (6):

SG, j+D—=S0 HY T,(+1, )T,
|:1+< Ar >i| ks Az
(1—x)Az+ 5

T TUL) | (SGDZS6D), 1y

—k Az A
7+x z
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(a) internal meshes
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Recall that the subscript in 7', simply refers to the
target material. Note that the new location of the
interface is determined by assuming that the change
in the interface at any r position occurs only in the z-
direction. However, it is emphasized that the change
in the interface does vary with the radial position. If
the interface is in a surface element of the target, the
corresponding equation would be

[1 N <S(i,j+ 2: S(i,n) ] .

T 7;(@1‘) _, L(S’(i,j)A—lS(z‘, j))_ (16b)
X5

T2(1+1aj)—Tnl
: Az

e-95

—k

Once S’(i, j) is calculated it can be used to obtain the
liquid portion x” at time 7+ At.

At the onset of melting, x =0, equation (16b)
becomes infinite. This singularity is removed by writ-
ing equation (16b) in an implicit form. Therefore, for
the starting condition we have

Ty(i+1,/)— T,

i
A
To-T3G)| _  SG.0)
—k Az =pL= 7 A7)
X 3

Unlike equations (16), which have only one unknown,
S’(i, j), equation (17) has three unknowns, namely
S’(i, j), x” and T%(, j). The last two parameters can
be eliminated by using equation (9) and the relation
S'(i, j) = x'(Az/2).

Determination of the temperature distribution and

S-L interface

(1-x) Az

(b) surface meshes

Fi1G. 4. Grid points near the solid—liquid interface.
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the solid-liquid interface involves the following pro-
cedure. The enthalpy of each grid point is calculated
from equation (14) or (15). For the first time step,
the temperature of each grid point is calculated from
equation (7). Then the temperatures of the surface
grid points are compared with the melting tempera-
ture, T, If all of these temperatures are less than the
melting temperature there is no phase change and the
calculations continue for the next time step following
the above procedure. If any surface temperature is
greater than the melting temperature, the solid-liquid
interface is assumed to be in that mesh. The initial
location of the solid-liquid interface is then calculated
from equation (17). For the next time step, equation
(16b) is then used to determine its location as long as
the interface remains in a surface mesh. Once the
interface moves into an internal mesh, equation (16a)
is used. The grid point temperatures of the meshes
that are completely in the solid or in the liquid phase
are calculated from equations (7a) or (7b), respec-
tively. The temperatures of the meshes containing the
solid-liquid interface are calculated from equation
9.

The thermophysical properties used in the calcu-
lations were obtained from Touloukian and Ho [20]
and Rohsenow and Hartnett [21]. For a commercially
pure aluminum medium these properties are approxi-
mated as follows:

Thermal conductivity

k, =226.67+0.0337 300K < T < 400K (18a)

k,=264—0.055T 400K < T<933K (18b)

k, = 63+0.03T 933K < T'< 1600K (18¢c)

k=114 1600K < T<2723K (18d)

Specific heat

Cpe =0.762+4.67x 107°T 300K < T<933K (19a)
cu =0921kIkg™ 'K~ T>933K (19b)

Density

p, =2767—0.22T 300K <« T'< 933K (20a)

0 = 2640—0275T 933K <« T < 1400K. (20b)

The time steps used in the calculations varied for
different cases. Values from Az = 3x 107" s (for the
nanosecond case) to 3 x 167% s (for the millisecond
case) were used. Calculations were also made with a
time step of At = 1.5 x 10~ * s for the millisecond case.
The results were virtually identical.

RESULTS AND DISCUSSION

The results of the present model were compared
with the experimental data of Clough et al. [22], who
presented results for the final melt depth profile in a
1100 aluminum alloy target. A rectangular plate sample
with dimensions of 40x15x4 mm’ was heated
with a 100 ms duration stationary electron beam hav-

A. A. Rostami ef al.

® cxperiment|20}
— pumeri

Melt depth, mm

9. 54

2.0 H i i
2.8 2.8 4.8 $.8

Absorbed Energy Flux, (Wim?)

B.2(10%

F16. 5. Maximum melt depth vs absorbed energy fiux for a
100 ms pulse.

ing a uniform intensity over a circular cross-section
with a 1 mm radius. The beam energy is completely
absorbed by the target. Therefore, the calculations
were made with R=0. A value of a = 1 x10° m™!
has been used [17]. Photographs of the final melt
depth profiles were obtained for several energy fluxes
using an acoustic emission method [22].

Figure 5 shows the maximum depth of the melt at
the end of a 100 ms pulse for different absorbed energy
fluxes, g, = I, for R = 0. The agreement between the
experimental data and the numerical results is very
good for fluxes less than g, =6x10° W m™72
However, at the higher energy fluxes the model under-
predicts the data. This disagreement is due to the fact
that the model assumes that the surface temperature
does not reach the boiling point (2723K). This
assumption is not valid for high energy fluxes because
the surface reaches the boiling point during the early
stages of pulse heating. Figure 6 shows the time that
is calculated for the surface temperature of the alu-
minum target at » = 0 to reach the boiling point with

2.84-

bt
@
H

Time fraction, 11,
®
&
T

s
N

ol 1 1 1
b.89 3.9 4.8 5.8 6.8

Absarted Energy Fluyx 4.7 -~

7.8(10%

F1G. 6. Time needed for the surface temperature at r = 0 to
reach boiling point.
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a CW uniform intensity laser beam. Note that for
g.=6x10® W m~? it takes only 6% of the pulse
duration for the surface temperature at r = 0 to reach
the boiling point (more time is needed at larger dis-
tances from the beam axis). From Fig. 5 it is seen that
for this high energy flux the calculated melt depth is
still in fair agreement with the experimental data. This
can be explained as follows. Once the surface tem-
perature reaches the boiling point, a portion of the
energy is used to vaporize the material and less energy
is available for melting. If the energy deposition does
not cause melt ejection, the process will be one of
simple vaporization, with the surface remaining at
the boiling point and recessing due to the material
removal (due to evaporation). Consequently, there
are two opposing factors acting on the progress of the
melt depth. The penetration of the high temperature
surface toward the interface resulting from evapor-
ation tends to increase the actual melt depth (a factor
that is ignored in the model), while the smaller amount
of energy available for melting tends to decrease the
melt depth (also ignored in the model). These oppos-
ing effects apparently yield the fair agreement between
the numerical model and the experimental data at the
higher energy fluxes.

Figure 7 shows the final solid—liquid interface pro-
files for the aluminum target that was irradiated with
100 ms pulses for two different energy fluxes. The
predictions lie somewhat below the experimental data
in the central region and above the data in the outer
region. This difference may be due to the fact that
the target is not thermally semi-infinite ; that is, the
thickness, 4 mm, is comparable to the thermal
diffusion length. Figure 8 shows the calculated surface
temperature of the same target at r = 0 as a function
of time for different values of the absorbed energy
flux. Note that the time calculated for melting to begin
(at 933 K) is almost the same over the range of the
absorbed fluxes studied. Although the surface reaches
the boiling point (2723 K) very quickly for the highest
flux, it does not reach that value for the two smaller

9.8,
®  experiment(20], q,.=3.3xm“w1m§
®  experiment{20], 92=2.7% 10°W im
~— numerical
8.8

Melt Depth, mm

®
N

| 1

8.8 L 1 ]
b2 .26 8.5 0.76 1.08 1.25 1.5

Radial Distance, (r/w)

Fi1G. 7. Steady state melt depth for a 100 ms pulse.
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2.9 . 1 1 1 i

‘8.8 8.2 8.4 8.6 8.8 1.8

Radial Distance, (r/w)

FiG. 8. Surface temperature atr = 0, 7, = 100 ms for different
absorbed energy levels.

fluxes. For ¢, <4x10® W m~? the temperature
increases continuously with time, and a change in the
slope of the temperature profile results due to melting.

Calculations were made over a range of pulses vary-
ing from nanosecond to millisecond durations. The
effects of laser pulse duration on the aluminum surface
temperature and the melt depth are shown in Figs. 9—
14. The results during the cooling period are also
included in these figures. For these calculations a uni-
form intensity beam was used in which the intensity
was changed stepwise at ¢ = 0 and remained constant
during the pulse duration (rectangular temporal
shape). The beam diameter was 200 um ; other beam
parameters are given in Table 1.

As the pulse duration was increased from case 1 to
6, the absorbed energy flux was decreased in order to
keep the surface temperature below the boiling point.
The values of the heat fluxes in the table were varied
according to 1/\/ t,, except for the smallest energy
input ; namely case 6.

Figure 9 shows the surface temperatures of the
aluminum target at r = 0. For the millisecond pulse,

Surface temperature (1000 K)

8.8 8.4 9.8 1.2 1.8
Dimensionless Time (418,

F1G. 9. Surface temperature vs time for different pulses.
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2400, 59,
-~ ~ 100 microsecond pulse
b 1 millisecond pullee
__ 2o88 g
) g 4@
g g
g 1820 &
g B agl
= o
2 =
. 1200 g )
£ E 29 \
& seal- g \
S 1
=
18 1
408 y
1
o i H i : I g N I
8.90 ©.25 B.S8 8.75 1.88 1.25 {.58 9.8 8.4 2.8 1.2 1.8 2.9
Radial Distance, (r/w) Dimensionless Time (s/1,)

Fi1G. 10. Surface temperature profiles at the end of the pulse.  Fig. 13, Maximum melt depth vs time for 100 us and 1 ms
pulses.

24
-+~ | microsecond pulse
~—— 10 microsecond pulse
8.7 2 s 100 microsecond pulse
1 nanosecond pulse — — — g 23?“

& g. 6} 10 nanosecond pulse g
g 8
E K
- 0.5k >
2 P
R B,
= 8.4 a
3 3

=
E 0.3
£
] 2.2
= %

[=D] = 8.8
p.pa B8.25 9.58 B.75 1.9 1.25
%4 o Radial Distance, (r/w)
a.9 2.4 2.8 1.2 1.8 2.8

. F1c. 14. Melt depth profiles at the end of the pulse.
Dimensionless Time (t/r)

FiG. 11. Maximum melt depth vs time for | and 10 ns pulses. L .

case 6, the temperature quickly reaches a constant
value (in terms of dimensionless time, ¢/1,) and drops
sharply after the end of the pulse. For shorter pulses
(cases 1-5), the surface does not reach a constant
value during the heating pulse. After the removal of
29 the power at t/t, =1, the surface temperature

. = =] microsecond pulse decreases for all of the cases. However, at t/r, = 2, the
5 10 microsccend pulse temperature does not return to the initial temperature
£ 18 except for case 6. At this time the heating pulse begins
g
g
2 o
E Table 1. Energy fluxes and pulse durations
g
g 8 Pulse Energy
E duration (s), flux (Wm~?),
= Case t q,
4p
1 IE—9 9.5E+11
2 IE—-8 3I8E+ 1
2.0 . 3 1E—6 318E+ 10
8.9 8.4 0.8 1.2 1.6 2.8 4 1IE-5 9.68E+9
Dimensionless Time (t/2,) 5 IE—4 3.I8E+9
6 IE-3 35E+9

Fi1G. 12. Maximum melt depth vs time for | and 10 us pulses.
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again (not shown) and the surface temperature is now
at a higher value for cases 1-5. Figure 9 shows that
for pulses shorter than or equal to 10 us (cases 1-4)
the variations of the surface temperature at r = 0 with
respect to the nondimensionalized time are approxi-
mately the same. Since the absorbed energy flux was
varied inversely proportional to \/ tp, it is concluded
that the maximum surface temperature (that is, at
r = 0) for short pulses can be predicted from

(T=Tax = 10/ 1, @1

where C, is a function of the thermophysical prop-
erties of the target material (7, K; g,, Wm™?%; z,, 5).
From the results shown in Fig. 9, a value of
C,=591x10"° K m~? W~ "2 was obtained. The
temporal variation of the temperature at r = 0 during
these heating pulses can be estimated from :

T(r=0,)—T = Ciq./t.

Equation (22) is of the form given by the analytical
solution for a one-dimensional semi-infinite solid that
is heated uniformly at the surface without a change of
phase. This conclusion is of a general nature and
should be valid for values other than those given in
Table 1 provided that the pulse duration is short and
no vaporization takes place. Equation (22) is useful
for predicting the range of the energy fluxes that are
needed for surface melting without permanent dam-
age (vaporization). These values are given in Table 2
for different uniform intensity pulses. The values of
d.m and g, are calculated from equation (22) by using
T=T,and T =T, respectively. q,, is the amount
of absorbed heat flux needed to increase the surface
temperature of the target at the center of the beam to
the boiling point of aluminum at the end of the pulse.
In general, the threshold intensity depends on the
pulse duration and the temporal and the spatial dis-
tribution of the incident beam. McKay er al. [23]
reported a threshold absorbed peak flux of 1.25 x 10'°
W m~? for an aluminum target irradiated by a CO,
laser (4 = 10.6 um) with a pulse duration of 1.8 us.
Equation (22) gives g,, = 2.74 x 10'* W m~2 Much
lower threshold absorbed heat fluxes, of the order of
10* W m~ ? were also reported [24].

Figure 10 shows the surface temperature profile
at time t/t, = 1 for the various pulse durations, ¢,.
The results show that the shorter the pulse the more
uniform is the temperature. For pulses shorter than
or equal to 1 us the problem can be considered to be

(22

Table 2. Ranges of absorbed energy for melting of aluminum

Pulse duration amn o
(s) (Wm™?) (Wm~?
1E-5 339E+9 1.3E+10
IE-6 1.07E+10 4.09E+ 10
IE-7 3.39E+10 1.29E+11
1E—~8 1.07TE+ 11 4.09E+11
1E-9 3.39E+ 11 1.29E+ 12
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one-dimensional because of the small thermal
diffusion length in comparison to the beam diameter.
Equations (21) and (22) are valid as long as the one-
dimensional approximation is valid. This approxi-
mation fails for pulses longer than 10 us; that is,
cases 5 and 6 (note that for case 4, r, = 10 ps, the
approximation begins to be less accurate). The results
for the melt depth at the center of the beam (r = 0)
for different pulses are plotted versus dimensionless
time in Figs. 11-13. As the duration of the pulse
is increased the maximum melt depth increases. For
pulses shorter than 10 us the maximum depth occurs
after the end of the pulse. The time lag increases as
the pulse duration decreases. Figures 11 and 12 show
that the solidification front does not reach the surface
during the short cooling periods for these cases. The
maximum melt depth for the millisecond pulse (cf.
Fig. 13) is two orders of magnitude greater than that
for the nanosecond puise (cf. Fig. 11). The velocity of
the solid-liquid boundary, which represents the rate
of melting or solidification, is of the order of 200 m
s~ ! for the nanosecond pulse and 0.5 m s~ ' for the
millisecond pulse.

Figure 14 shows the radial distribution of the melt
depth at the end (#/t7, = 1) of three different pulses.
Again, the radial dependence may be neglected for
pulses shorter than or equal to 1 us.

Figures 15 and 16 show the results for a more prac-
tical pulse. Here the spatial distribution of the inten-
sity is given by a Gaussian profile, I = I, e“’z"'“’z), and
a triangular temporal variation is used (with the inten-
sity increasing linearly from zero at the beginning
of the pulse to a maximum value at t/¢, = 0.5, then
decreasing linearly to zero at #/¢, = 1 and then remain-
ing at zero). The maximum flux at the center of the
beam, /,,is 1.91 x 10'2 W m~? with a beam diameter
of 200 um. Figure 15 shows the solid-liquid interface
at different times. In contrast to the case of a uniform
intensity nanosecond pulse (cf. Fig. 10, case 1) the
melt depth changes considerably in the radial direc-
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F1G. 15. Solid-liquid boundary profiles for nonuniform tri-
angular temporal shape nanosecond pulse.
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Fi1G. 16. Surface temperature profiles for nonuniform tri-
angular temporal shape nanosecond pulse.

tion and the one-dimensional approximation is no
longer valid. Note that the maximum depth of the
melt zone increases with time until /1, = 1.25, and
then begins to decrease ; the radius begins to decrease
after ¢/, = 0.75. Therefore, the time ¢/¢, = 1 cannot
be simply used as the only characteristic time that is
needed to describe all the complex variations that are
taking place. The actual temporal variations of the
heat flux and the properties of the material must also
be considered. The longer diffusion time from the
surface to the depth of the melt zone results in a slower
response to the temporal variation of the incident
radiation. The result is a radial shrinking of the melt
region. Figure 16 shows the surface temperature pro-
files at different times. After #/f, = 0.75, the tem-
peratures over the entire surface decrease with time
and a decrease in the radial gradient is observed. Note
that the radial temperature gradient is two orders of
magnitude smaller than the axial (z-direction) gradi-
ent. We again note that the actual magnitudes of the
unsteady heat fluxes are important and it s difficult
to generalize the results.

CONCLUSIONS

The enthalpy method was modified and applied to
the problem of rapid melting and solidification of a
substance resulting from the application of a pulsed
laser beam. The temperature plateau which usually
results when the enthalpy method is used was
eliminated by using energy boundary condition at the
solid-liquid interface. Good agreement was obtained
between the predictions and experimental data for the
melt depth profile in an aluminum target. The results
of calculations for a range of pulse durations from
nanoseconds to milliseconds have shown that for
short pulses the radial dependence of the melt depth
and the temperature become similar to the radial dis-
tribution of the intensity of the laser beam. For short
pulses with a spatially and temporally uniform inten-

A. A. Rostamt er al.

sity, a simple relation exists between the melt depth,
the flux and the time. This relation can be used to
predict the range of energy fluxes which can cause
melting without material removal at the surface.
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APPENDIX

Expressions will be given here for the coefficients in equa-
tions (14} and (15). Consider a grid point p surrounded by
four grid points e, w, s, and n as shown in Fig. Al. For the
internal grid points except for those located at r =0, the
following expressions are used:

Ar
(152}

e =kep=—pe5 ey =k ey

i+1

ij-1

S

i-1

FiG. Al. Grid points for the numerical method.
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Ky Ko _
dy Z;? 3 AZ’ b =4y
g, = L(1 = ) —e ™),
z; = (i~ 1.5)Az, z,=(i—0.5Az
pAz
pp = s Gp = —(a.+ay,+a,+a) (AD)

where k, is the average thermal conductivity between point
e and p, etc. It can be expressed as:

2k,
o = etk
For points located at r = 0, all the above relations are appli-
cable except for &, and a,, which are given by

k,Az
a,=a,=4 Aprf.

(A2

Equation (A2) is good if both grid points e and p and the
entire corresponding meshes are in a single phase. However,
if the two neighboring grid points are separated by a solid-
liquid interface, then the equivalent thermal conductivity
between them can be obtained by referring to Fig. A2, For
two points at the same z distance (see Fig. A2(a)), the
expression is

2k .k, ]
ko )

where &, and &, are the thermal conductivities of the liquid
and the solid phases at the melting point, respectively. For
the two grid points at the same radial distance (see Fig.
AZ2(b)) we get

K = kg (KXo + (1 —X0). (Ad)

For the surface grid points (z=0), the following
expressions may be used except for the one at r = 0:

kg = KXy + k(T —x,)+ (A3)

Ar
(1 + Z;)(kep,Azl +kopnAzy)

A
(1 - —’)(kw,ﬂAz, + ke Az2)
2r,
Go= " 2Ar? :
Koma Kopt ,
a, "A:; aS_A.Z"' b*"h‘*"’v

F1G. A2. Method of calculating thermal resistance between grid points.
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g, = L{I=R)(1 —e 03y, For r=0. the relations a, = o, = 2k, Az, +kAz) AP
are used. The other expressions given for the internal grid

_ Paeabzs (A5)  points are still applicable.

b =eo(TH—TH, a, = A7

METHODE ENTHALPIQUE MODIFIEE APPLIQUEE AUX FUSIONS ET
SOLIDIFICATIONS RAPIDES

Résumé—On étudie la solidification et la fusion rapides de matériaux types. La technique enthalpique est
utilisée dans une forme explicite aux différences finies pour calculer la position de Pinterface solide-liquide
et la distribution de température dans le matériau. La technique a été modifiée de fagon 4 ne pas nécessiter
le maintien & la température de fusion pour l'interface. En utilisant la condition aux limites de I'énergie 4
Pinterface, une nouvelle valeur de la température du point de la grille est calculée 4 chaque pas de temps.
Les matériaux entre deux points de grille qui sont de chaque ¢6t¢ de I'interface sont deux phases qui ont
des conductivités thermiques trés différentes. Les résistances thermiques du matériau entre ces deux points
sont calculées en traitant la région comme un matériau composite. Les effets de durée, la forme temporelle
et l'intensité du laser pulsé sont étudies pour connaitre la vitesse de propagation du changement de phase
et la distribution de température. Les résultats de la prédiction numeérique de la profondeur du bain créee
dans un échantillon d'aluminium avec un faisceau d’électrons de 100 ms sont comparés avec des données
expérimentales et on obtient un bon accord.

MODIFIZIERTES ENTHALPIE-VERFAHREN FUR SCHNELLES SCHMELZEN
UND ERSTARREN

Zusammenfassung—Es werden schnelle Schmelz- und Erstarrungsvorginge untersucht. Der Verlauf der
Fest-Fliissig-Phasengrenze sowie die Temperaturverteilung im Material wird mit einer expliziten Finite-
Differenzen-Form des Enthalpie-Verfahrens berechnet. Das Verfahren wurde so modifiziert, daf die Tem-
peratur des Gitterelements, in dem sich die Phasengrenze befindet, nicht konstant bei Schmelztemperatur
bleiben muB. Stattdessen wird bei jedem Zeitschritt mit der Randbedingung fiir die Energie an der
Phasengrenze ein neuer Temperaturwert fiir den Gitterpunkt berechnet, Zwischen den Gitterpunkten,
welche die Phasengrenze einschlieBen, liegt das Material in zwei Phasen vor und weist daher sehr unter-
schiedliche Wiarmeleitfihigkeiten auf. Zur Berechnung des Temperaturleitwiderstandes zwischen diesen
Gitterpunkten wurde der Bereich als Verbundmaterial betrachtet. Die Einfliisse der Dauer, des zeitlichen
Verlaufs und der Intensitit des Laserpulses auf die Bewegung der Phasengrenze und der Temperatur-
verteilung wurden untersucht. Die Ergebnisse einer numerischen Vorausberechnung der Schmelztiefe in
Aluminium bei Einwirkung eines Elektronenstrahis von 100 ms Dauer wurden mit experimentellen Daten
verglichen. Es zeigte sich eine gute Ubereinstimmung.

NPUMEHEHHUE MOAUGUILIMIPOBAHHOTO METOJA SHTAJBIMUHU K MTPOLECCY
BbICTPOT'O TUTABJTEHMSA U 3ATBEPAEBAHMS

Amnoramas—Hccnenosanoch GHICTPOe ILTABICHHE M 3aTBEPICBAHHE MaTepnala MHIICHH. Meroll JHTA-
NBIHK B ABHOH KOHEYHO-PA3HOCTHOH ¢opMe HMCNosb30BANCA UM ONPENCNEHHS [OJIOXEHHS I'PaHAULI
pasjena TBEpAOe TENO — XKUIKOCTh M PACOPele/CHHS TeMnepatyp B Muuenn. Merox mommpuumpo-
BaNcs TakuM o6pa3zoM, YTOOL! OTCYTCTBOBAJa HEOOXOOHMOCTL COXPAaHEHHS TEMIEPaTyphl AYeHkH, B
KOTOPO# HAXOOMTCSA FPAHMIA pa3fiesa, NOCTOAHHON ¥ paBHOH TeMnepaType nnasaenus. C Hcnonb3opa-
HHEM YCIOBHS JUIS SHEPIMH HA TPaHMIE pasfesa paccyuThiBafoch HOBOE 3HAYEHHE TEMIEPATYPHl B
Y3JIaX CETKM Ha KaX[OM BPeMEHHOM mare. MaTepuan Mexay OByMs y3AaMHA CETKH, DACHOJIOKEHHBIMH
1o o8¢ CTOpOHBI IPaHMIbl pasjeNia, COCTOHT M3 JABYX $a3 ¢ CyNIECTBEHHO Pa3JIMYHBIMH Ko3(dummen-
TaMH# TenaonpoBoAHOCTH. [IpH onpeleneHuy TEMIOBOrC CONPOTHBIACHHS COOTBETCTBYIOmas obracTh
pacCMATPHBANIACH KK KOMIO3HTHBIE Matepman. Mccnenosanocs BMsHHE [UIMTENBHOCTH, dopmsl 2
MHTEHCHBHOCTH J1a36PHOIO MMIIy/IbCa Ha CKOPOCTH PaclmpocTpaseHus (Pa3oBOro Nepexoia M pacnmpene-
FieHHE TeMIepaTyp. PesynbTaThl YHCACHHOTO ONpe/caeHns ryOuHpl pacniasa, o6palyiowerocs B auwo-
MHHHEBOH MHINGHN HOJ ACHCTBHEM 3IeKTPOHHOIO HMIyJbCa JUHTeNbHOCTEI0 100 Mc, cpaBHMBAMHCH C
IKCHEPHMEHTATLHBIME JAHHBIMH, H OJIY4EHO HX XOPOILEE COTTIaCHE.



