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Abstract-The rapid melting and solidification of a target materiai was studied. The enthaipy technique 
was used in an explicit finite difference form to calculate the location of the solid-liquid interface and the 
temperature distribution in the target. The technique was modified so that it is not necessary that the 
temperature of the mesh containing the interface remain constant at the melting point. Instead, by using 
the energy boundary condition at the interface a new value of the temperature of the grid point is calculated 
at every time step. The materials between two grid points that are on each side of the interface consist of 
two phases with considerably different thermal conductivities. The thermal resistances of the material 
between these grid points were calculated by treating the region as a composite ma~er~~. The effects of the 
duration. the temporal shape and the intensity of the laser pulse on the rate of propagatjon of the phase 
change and on the temperature distribution were studied. The results of the numerical prediction for the 
melt depth created in an aluminum target with a 100 ms electron beam were compared with experimental 

data and good agreement was obtained. 

INTRODUCffON 

THE ~~~RMINATION of the heat transfer during a 
solid-liquid change of phase is of importance in prob- 
lems relative to welding, coating, crystal growth, 
environmental engineering and chemical analysis. In 
many cases multidimensional variations are impor- 
tant, boundary conditions are complex, thermo- 
physical properties vary with temperature and phase, 
volumetric heat sources may be present, and several 
mechanisms of heat transfer may take ptace. Thus 
analytical solutions [l-4] which exist for specific prob- 
lems have a limited range of appficability. fn order to 
solve these probiems numerical methods are usually 
required. 

A large number of numerical techniques have been 
developed to solve solid--liquid phase change prob- 
lems. Extensive reviews of many analytical and 
numerical techniques can be found in Ockcndon and 
Hodgkins 131, Shamsundar [S] and Salcudean and 
Abdul~ah [6]. The numerical methods used may be 
conveniently divided into two groups. In the first 
group the temperature is the only dependent variable 
and the energy conservation equations are written 
separately for the solid and the liquid regions. The 
major difficulty with this technique arises from the 
need to track a continuously moving phase change 
interface. The rate of propagation of this boundary 
into the solid region (melting) or into the liquid region 
(solidification) depends on the temperature gradients 
on both sides of the boundary, which are unknown a 
priori. Various procedures have been developed to 

t Present address: Department of M~hanical Engin- 
eering, Isfaban University of Technology, fsfahan, Iran. 

deal with this problem, including moving grid points 
and isotherm migration [3,7-lo]. In the second group, 
known as the enthalpy method, both the enthalpy and 
the temperature are used as dependent variables in the 
energy equation. The resulting equation is applicable 
at all the grid points in the solid and in the liquid 
regions as well as those containing the solid-liquid 
interface. Carslaw and Jaeger [Z] and Shamsundar 
and Sparrow [I 11 demonstrated the equivalence 
between the enthalpy fo~ujatjon and the conduction 
energy equation assuming equai densities for both 
phases. In the conventional enthatpy method the 
solid-liquid energy boundary condition is not utilized 
and the problem reduces to one of nonlinear heat 
conduction. The location of the phase change inter- 
face is determined from the calculated enthalpies. 

The enthalpy method is reasonably accurate for 
metals which undergo a change of phase over a tem- 
perature range. However, for materials with a change 
of phase which takes place at a single temperature, 
the enthatpy method is inaccurate in the region near 
the phase front. Voller ef ai. f 12,131 used the enthafpy 
method for water, and showed that (i) the calculated 
phase change boundary moved in an oscillatory 
fashion and (ii) the temperature history contained a 
number of plateaus. These nonphysical features 
resulted for water because of the large value of the 
ratio of the latent heat to the change in enthalpy of 
the sensible heat. Voller and Cross [ 131 and Tacke [ 141 
have proposed techniques to improve the accuracy of 
the enthalpy formulation. A review of the enthalpy 
formulation can be found in refs. [ 11, 1.51. 

In a study of rapid melting and solidification during 
pulsed laser heating, Hsu et al. [ 16f employed an 
enthalpy formulation similar to that used by Sham- 
sundar and Sparrow [ 1 If. The temperature history of 
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FIG. I. Physical model for the problem showing beam 
irradiation. 

thermally semi-infinite region is assumed. The intensity 
of the beam is a maximum at the optical axis, Y = 0, 
and decreases radially and axially in the material. For 
thermal analyses, a commonly used radial distribution 
for lasers is the cylindrically symmetric Gaussian pro- 

file [I 71 : 

where h(t) < I describes the temporal variation of the 
beam, which is a dimensionless quantity. If the inten- 
sity of the incident beam does not vary with time, 
h(t) = 1. The local radiation intensity within the target 
material, I>,, considering volumetric absorption and 
surface reflection, may be written as 

f, = &(I---R)e-“‘. (2) 

It is pointed out that reflections at the solid-liquid 
interface may be neglected because the absorption is 
strong so that little radiation reaches the interface. 
The energy absorbed may be represented as a heat 
source within the material having a rate of heat gen- 

eration per unit volume, g, given by [I81 : 

g= -~=al,(l-K)e-“=. (3) 

The diffusion equation may be written in terms of 
enthalpy [l 11. For two-dimensional transport with 
heat generation the equation is given by 

where t: is the enthalpy and j = I,2 corresponds to 
the regions shown in Fig. 1. For region I, which is 
usually air, g, = 0 and p ,(&,j&) is replaced by 
p,c,(aT,/at). Equation (4) is used for each discretized 
spatial domain, which by appropriate substitution of 
thermophysical properties will be valid regardless of 
whether the domain is in the solid state, the liquid 
state, or contains the solid-liquid interface. The inter- 
face in this case is axisymmetric. At the interface the 
following conditions hold 1191: 

T, = T, = T,,, (5) 

where L is the latent heat of fusion of the target 
material. Equation (6) represents the energy balance 
across the phase boundary ; i.e. z = S(r, t). Note that 
the complete energy balance across the phase bound- 
ary would require two equations co~esponding to 
the axial and radial directions [19]. In this study the 

interface is divided into a series of steps for each grid 
point which are taken to be perpendicuiar to the z- 

direction. Therefore the equation in the radial direc- 
tion is not utilized. 

The relationship between the enthalpy and tem- 

perature is now considered. For a binary phase change 
this variation is assumed to be a piecewise linear func- 
tion within the mushy zone with a step function 
change at the solid temperature, T,, (see Fig. 2). The 
enthalpy-temperature relations for any element that 
is completely in the solid or in the liquid phase are 
given as follows : 

j 

T 

e, = c,dT T < T,,, (7a) 
ml? 

s 

T 
e, = c,dT+L T> T,,. (7b) 

T”l 

The solid state at the melting temperature is chosen 

as the reference point with an enthalpy of zero. For a 
mesh containing the interface the average enthaipy is 
defined as 

e = xe,+(l-x)e, (8) 

where x is the mass fraction of the mesh in the liquid 
phase. By using an average value for the specific heat 

and employing equations (7a) and (7b), equation (8) 
is expressed as 

e = xL+c,,[(T-T,,,,)+.x(T,,,-T,,,,)]. (9) 

e 
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/ 

T 
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FIG. 2. Enthaipy-temperature relation. 
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In the present work the materials studied have a 
change of phase at a single temperature. Equations 
(7a), (7b) and (9) may be used for this condition by 
using T,, = T,,,, = T,,,. Note that by writing equation 
(9) for a mesh (instead of a grid point) it is possible 
to obtain the phase change boundary at every time 
step, as discussed later. 

The initial condition for equation (4) is a uniform 
temperature, T = T,, everywhere. The boundary con- 
ditions at the surface -7 = 0 are 

At the extreme boundaries the conditions are 

Z’co, Tz = 7; (lla) 

z-+ -“?, T, = 7;. (Ilb) 

From symmetry we have 

r=O, cjc!=o, %=o. 
r dr 

Far from the axis of the beam, for any value of z, we 
have 

r+co, jr{ = Tz = T,. (13) 

The location of the solid-liquid interface is obtained 
from equation (6). The enthalpy and the temperature 
are calculated from equations (4), (7) and (9). 

NUMERICAL METHOD 

The first step in the computational process is to 
subdivide regions 1 and 2 into a number of small 
elements. Figure 3 shows the pattern of the grid points 
used in our calculations. The grid points are fixed in 
space while the interface moves in the target. The grid 
sizes used in the caicuIations were approxjmately 

determined from AZ, z &,/m,, AZ, x 6,Jm2 and 
Ar = n/n; fit, and at2 being the thermal diffusion lengths 
in air and the target material at room temperature. 
Values of m, = m2 = 50 and n = 10 were used 
throughout the calculations. However, because of the 
large range of the time periods from milliseconds to 
microseconds, the grid sizes in the z-direction were 
different for different cases. For example, for a milli- 
second pulse AZ, = AZ, = 12 pm, for a microsecond 
pulse AZ, L= AZ, = 0.4 [fin, and for a nanosecond 
pulse AZ / = AZ, = 0.012 pm were used. A radial spac- 
ing of Ar = IO pm was used for all cases. The tcm- 
perature distribution and the melt pool size did not 
change noticeably when the mesh was refined with a 
factor of 1.5 for the millisecond case. 

The finite difference form of equation (4) for the 
internal grid points of region 2 in the explicit for- 
mulation is given by 

[nJZ(i- l,j)+anT&+ 1, j)+Q’,(i,j+ 1) 

e’,(i, j) = 
+u,TZ(i,j-l)+a,T,(i,j)+a,,e,(i,.~)+b] 

%P 
(14) 

All the quantities on the right hand side of equation 
(14) correspond to the previous time step, while 
e;(& j) corresponds to the new time. The coefficients 

a,, a,, n, and a, include the thermal resistances 
between the grid points. Composite resistances are 
accounted for due to the presence of two phases 
between the grid points adjacent to the solid--liquid 
interface. The coefficients app and up include the mass 
and the specific heat of the element, respectively, and 
b represents the heat generation within the element. 
These coefficients are given in the Appendix. They are 
calculated at every time step to account for the changes 
in the the~ophysical properties with temperature and 

axis of ‘beam + j=l 

3 2 i=l 2 3 

region I region 2 (tar@ 

FIG. 3. Grid pattern used in the numerical solution. 



change of phase. The corresponding finite difference 
equation for the surface element of the target, z = 0, is 
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Recall that the subscript in T2 simply refers to the 
target material. Note that the new location of the 
interface is determined by assuming that the change 
in the interface at any r position occurs only in the z- 

direction. However, it is emphasized that the change 

%P in the interface does vary with the radial position. If 
(15) the interface is in a surface element of the target, the 

corresponding equation would be Here, b includes the radiation heat loss to the sur- 
roundings in addition to the heat generation inside 

the element. The grid points at the surface of the 
target represent elements containing materials of both 
regions 1 and 2. In order to eliminate the ambiguity 
concerning the definition of a single enthalpy for a 
composite element, the mass of air in these elements is 
neglected compared to the mass of the target material. 
This assumption does not have a significant effect on 

the accuracy of the results as long as the density of 
material 1 (air in this example) is much smaller than 
that of the target. For the internal grid points of 
region 1, the conduction equation is written in a finite 
difference form [ 181. 

We apply the finite difference form of equation (6) 

to the solid-liquid interface. Figure 4 shows the vol- 
ume element (i, j) containing the interface and its 
neighboring elements at time t. The interfacial surface 

Once S’(i, j) is calculated it can be used to obtain the 
liquid portion x’ at time t + At. 

At the onset of melting, x = 0, equation (16b) 
becomes infinite. This singularity is removed by writ- 
ing equation (16b) in an implicit form. Therefore, for 
the starting condition we have 

Sat this time divides the average length of an internal 
element into a liquid portion xAz and a solid portion 
(1 -x)Az. After a small increment in time, At, the 

interface moves to a new location S’, resulting in an 
increase (melting) or decrease (solidification) of the 
liquid portion. The new location of the interface can be 
found from the finite difference form of equation (6) : 

L L 

_k T,-T;(i,.i) 
I 

AZ 
= pL S’(C A 

~ (17) 
“‘7 1 At 

Unlike equations (16), which have only one unknown, 
S’(i, ,i), equation (17) has three unknowns, namely 
S’(i, i), x’ and T;(i, j). The last two parameters can 
be eliminated by using equation (9) and the relation 
S’(i, j) = x’(Az/2). 

Determination of the temperature distribution and 

_t* -----I f-7 .( : ,. t 

i-1 _‘i::.! . i 

i+l,j I 

__-- : 

iji 

(a) internal meshes 

(1-x) AZ 

(b) surface meshes 

FIG. 4. Grid points near the solid-liquid interface. 
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the solid-liquid interface involves the following pro- 
cedure. The enthalpy of each grid point is calculated 
from equation (14) or (15). For the first time step, 
the temperature of each grid point is calculated from 
equation (7). Then the temperatures of the surface 
grid points are compared with the melting tempera- 
ture, T,,,. If all of these temperatures are less than the 
melting temperature there is no phase change and the 
calculations continue for the next time step following 
the above procedure. If any surface temperature is 
greater than the melting temperature, the solid-liquid 
interface is assumed to be in that mesh. The initial 
location of the solid-liquid interface is then calculated 
from equation (17). For the next time step, equation 
(16b) is then used to determine its location as long as 
the interface remains in a surface mesh. Once the 
interface moves into an internal mesh, equation (16a) 
is used. The grid point temperatures of the meshes 
that are completely in the solid or in the liquid phase 
are calculated from equations (7a) or (7b), respec- 
tively. The temperatures of the meshes containing the 
solid-liquid interface are calculated from equation 

(9). 
The the~ophysical properties used in the calcu- 

lations were obtained from Touloukian and Ho 1201 
and Rohsenow and Hartnett [21]. For a commercially 
pure aluminum medium these properties are approxi- 
mated as follows : 

Thermal conductivity 

k, = 226.67+0.033T 300 K < T Q 400 K (18a) 

k, = 264-0.0557 400K < T< 933K (18b) 

k, = 63+0.03T 

k, = 114 

933K < T< 1600K (18c) 

16OOK < 7-G 2723K (18d) 

Specific heat 

+=0.762+4.67x iOw4T 300K< T<933K (19a) 

cp, = 0.921 kJ kg-’ K-’ T > 933 K (19b) 

Density 

ps = 2767-0.22T 300 K < T < 933 K (2Oa) 

p, = 2640-0.275T 933 K < T < 14OOK. (2Ob) 

The time steps used in the calculations varied for 
different cases. Values from A? = 3 x IO- ’ 3 s (for the 
nanosecond case) to 3 x 10 _ 8 s (for the millisecond 
case) were used. calculations were also made with a 
time step of At = 1.5 x lo-” s for the millisecond case. 
The results were virtually identical. 

RESULTS AND DISCUSSION 

The results of the present model were compared 
with the experimental data of Clough et al. [22], who 
presented results for the final melt depth profile in a 
I 100 aluminum alloy target. A rectangular plate sample 
with dimensions of 40 x 15 x4 mm3 was heated 
with a 100 ms duration stationary electron beam hav- 

2.5 
l sxperimcnBZO1 

- nmncli~ 

Absorbed Energy Flux, (W/m') 
e (108) 

FIG. 5. Maximum melt depth vs absorbed energy Aux for a 
100 ms pulse. 

ing a uniform intensity over a circular cross-section 
with a 1 mm radius. The beam energy is completely 
absorbed by the target. Therefore, the calculations 
were made with R = 0. A value of a = 1 x lo9 m- ’ 
has been used 1171. Photographs of the final melt 
depth profiles were obtained for several energy fluxes 
using an acoustic emission method [22]. 

Figure 5 shows the maximum depth of the melt at 
the end of a 100 ms pulse for different absorbed energy 
fluxes, qa = I,, for R = 0. The agreement between the 
experimental data and the numerical results is very 
good for fluxes less than qa = 6 x lo* W m-‘. 
However, at the higher energy fluxes the model under- 
predicts the data. This disagreement is due to the fact 
that the model assumes that the surface temperature 
does not reach the boiling point (2723 K). This 
assumption is not valid for high energy fluxes because 
the surface reaches the boiling point during the early 
stages of pulse heating. Figure 6 shows the time that 
is calculated for the surface temperature of the alu- 
minum target at r = 0 to reach the boiling point with 

e(M) 

FIG. 6. Time needed for the surface temperature at Y = 0 to 
reach boiling point. 
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a CW uniform intensity laser beam. Note that for 

q,=6x108 W m -* it takes only 6% of the pulse 
duration for the surface temperature at r = 0 to reach 
the boiling point (more time is needed at larger dis- 
tances from the beam axis). From Fig. 5 it is seen that 
for this high energy flux the calculated melt depth is 
still in fair agreement with the experimental data. This 
can be explained as follows. Once the surface tem- 
perature reaches the boiling point. a portion of the 
energy is used to vaporize the material and less energy 
is available for melting. If the energy deposition does 
not cause melt ejection, the process will be one of 
simple vaporization, with the surface remaining at 
the boiling point and recessing due to the material 
removal (due to evaporation). Consequently, there 
are two opposing factors acting on the progress of the 
melt depth. The penetration of the high temperature 
surface toward the interface resulting from evapor- 
ation tends to increase the actual melt depth (a factor 
that is ignored in the model), while the smaller amount 
of energy available for melting tends to decrease the 
melt depth (also ignored in the model). These oppos- 
ing effects apparently yield the fair agreement between 
the numerical model and the experimental data at the 

higher energy fluxes. 
Figure 7 shows the final solid-liquid interface pro- 

files for the aluminum target that was irradiated with 
100 ms pulses for two different energy fluxes. The 
predictions lie somewhat below the experimental data 
in the central region and above the data in the outer 
region. This difference may be due to the fact that 
the target is not thermally semi-infinite; that is, the 
thickness, 4 mm, is comparable to the thermal 
diffusion length. Figure 8 shows the calculated surface 
temperature of the same target at r = 0 as a function 
of time for different values of the absorbed energy 
flux. Note that the time calculated for melting to begin 
(at 933 K) is almost the same over the range of the 
absorbed fluxes studied. Although the surface reaches 
the boiling point (2723 K) very quickly for the highest 
flux, it does not reach that value for the two smaller 

Radial Distance., (r/w) 

FIG. 7. Steady state melt depth for a 100 ms pulse. 

3.0 

I ‘_. 

8 !I - I’ q.=sx 108w/n? 
J’ 

--_ 8 q&x 108Wld 1.8. 
_._ 

G 
q,=3.3x108w/m~ _.._ qa=3.nr10sw/m* 

2 
0.5- 

ve ’ I I I 

8.2 8.4 8.8 8.8 

Radial Distance, (r/w) 

2167 

FIG. 8. Surface temperature at r = 0, t, = 100 ms for different 
absorbed energy levels. 

fluxes. For qa < 4 x 10’ W m- ‘, the temperature 
increases continuously with time, and a change in the 
slope of the temperature profile results due to melting. 

Calculations were made over a range of pulses vary- 
ing from nanosecond to millisecond durations. The 
effects of laser pulse duration on the aluminum surface 

temperature and the melt depth are shown in Figs. 9- 
14. The results during the cooling period are also 
included in these figures. For these calculations a uni- 
form intensity beam was used in which the intensity 

was changed stepwise at t = 0 and remained constant 
during the pulse duration (rectangular temporal 
shape). The beam diameter was 200 pm ; other beam 
parameters are given in Table 1. 

As the pulse duration was increased from case 1 to 
6, the absorbed energy flux was decreased in order to 
keep the surface temperature below the boiling point. 
The values of the heat fluxes in the table were varied 
according to l/Jt,, except for the smallest energy 
input ; namely case 6. 

Figure 9 shows the surface temperatures of the 
aluminum target at r = 0. For the millisecond pulse, 

2.4 
t 

CaSe 
----I 

8.01 I I I I 
0.0 0.4 0.6 1.2 1.6 2.0 

FIG. 9. Surface temperature vs time for different pulses 
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FIG. 10. Surface temperature profiles at the end of the pulse. 

0 

Dimensionless Time (r/r,) 

FIG. 1 I. maximum melt depth vs time for I and 10 ns pulses. 

/ ’ \ 
, 

/ \ 
/ 1 

10.- / ! 
/ I 

/ I 

CF.0 

I , I ..I I 
8.4 0.8 1.2 1.6 ; 

Dimensionless Tie (r/q 

0 

FIG. 13. Maximum melt depth vs time for 100 ps and 1 ms 
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FIG. 14. Melt depth profiles at the end of the pulse. 

case 6, the temperature quickly reaches a constant 

value (in terms of dimensionless time, t/Q and drops 
sharply after the end of the pulse. For shorter pulses 
(cases l-5), the surface does not reach a constant 
value during the heating pulse. After the removal of 
the power at t/t, = 1, the surface temperature 
decreases for all of the cases. However, at t/t, = 2, the 
temperature does not return to the initial temperature 
except for case 6. At this time the heating pulse begins 

Table 1. Energy fluxes and pulse durations 

Pulse Energy 

)----I-. 
duration (s), flux (W m ‘), 

Case ‘, q., 

1 IE-9 9.5Ei 1 I 
2 lE-8 3.1XE+ 11 

I I 3 lE-6 3.18E-k 10 
0.0 0.4 0.8 1.2 I.6 2.0 4 lE-5 9.68E+9 

Dimensionless Time (t/f& 5 IE-4 3.18Ef9 
6 lE-3 3SE+9 

FIG. 12. Maximum melt depth vs time for I and 10 ps pulses. ~ -- 



Modified enthalpy method applied to rapid melting and solidification 2169 

again (not shown) and the surface temperature is now 
at a higher value for cases 1-5. Figure 9 shows that 
for pulses shorter than or equal to 10 ~LS (cases l-4) 

the variations of the surface temperature at r = 0 with 
respect to the nondimensionalized time are approxi- 
mately the same. Since the absorbed energy flux was 
varied inversely proportional to Jrr, it is concluded 
that the maximum surface temperature (that is, at 

r = 0) for short pulses can be predicted from 

(T-T,),,, = C,&/tp (21) 

where C, is a function of the thermophysical prop- 
erties of the target material (T, K ; qar W m-‘; t,, s). 
From the results shown in Fig. 9, a value of 
C, = 5.91 x 10d5 K m-* W-“’ was obtained. The 
temporal variation of the temperature at r = 0 during 
these heating pulses can be estimated from : 

T(r = 0, t) - T, = C, q.Ji. (22) 

Equation (22) is of the form given by the analytical 
solution for a one-dimensional semi-infinite solid that 
is heated uniformly at the surface without a change of 
phase. This conclusion is of a general nature and 
should be valid for values other than those given in 
Table 1 provided that the pulse duration is short and 
no vaporization takes place. Equation (22) is useful 
for predicting the range of the energy fluxes that are 

needed for surface melting without permanent dam- 
age (vaporization). These values are given in Table 2 
for different uniform intensity pulses. The values of 
qam and qab are calculated from equation (22) by using 
T = T,,, and T = T,,, respectively. qab is the amount 
of absorbed heat flux needed to increase the surface 
temperature of the target at the center of the beam to 
the boiling point of aluminum at the end of the pulse. 
In general, the threshold intensity depends on the 

pulse duration and the temporal and the spatial dis- 
tribution of the incident beam. McKay et al. [23] 
reported a threshold absorbed peak flux of 1.25 x IO”’ 
W mm 2 for an aluminum target irradiated by a CO, 

laser (I. = 10.6 pm) with a pulse duration of 1.8 ~LS. 
Equation (22) gives q,, = 2.74 x 10” W rne2, Much 
lower threshold absorbed heat fluxes, of the order of 
lo8 W m-* were also reported [24]. 

Figure 10 shows the surface temperature profile 
at time t/t, = 1 for the various pulse durations, t,. 
The results show that the shorter the pulse the more 
uniform is the temperature. For pulses shorter than 
or equal to 1 /IS the problem can be considered to be 

Table 2. Ranges of absorbed energy for melting of aluminum 

Pulse duration 

(s) 

IE-5 
lE-6 
lE-7 
IE-S 
IE-9 

~Gll qah 
(W m-*) (W mm’) 

3.39E+9 1.3E+ 10 
1.07Ef 10 4.09E+ 10 
3.39E+ 10 1.29E+ll 
1.07E+11 4.09E+ 11 
3.39E + 11 1.29Ef 12 

one-dimensional because of the small thermal 

diffusion length in comparison to the beam diameter. 
Equations (21) and (22) are valid as long as the one- 
dimensional approximation is valid. This approxi- 
mation fails for pulses longer than 10 ps; that is, 
cases 5 and 6 (note that for case 4, t, = 10 ps, the 
approximation begins to be less accurate). The results 
for the melt depth at the center of the beam (r = 0) 
for different pulses are plotted versus dimensionless 
time in Figs. 1 l-13. As the duration of the pulse 

is increased the maximum melt depth increases. For 
pulses shorter than 10 ps the maximum depth occurs 
after the end of the pulse. The time lag increases as 
the pulse duration decreases. Figures 11 and 12 show 
that the solidification front does not reach the surface 
during the short cooling periods for these cases. The 
maximum melt depth for the millisecond pulse (cf. 
Fig. 13) is two orders of magnitude greater than that 
for the nanosecond pulse (cf. Fig. 11). The velocity of 
the solid-liquid boundary, which represents the rate 
of melting or solidification, is of the order of 200 m 
s- ’ for the nanosecond pulse and 0.5 m s- ’ for the 
millisecond pulse. 

Figure 14 shows the radial distribution of the melt 

depth at the end (t/t, = 1) of three different pulses. 
Again, the radial dependence may be neglected for 
pulses shorter than or equal to 1 ps. 

Figures 15 and 16 show the results for a more prac- 
tical pulse. Here the spatial distribution of the inten- 
sity is given by a Gaussian profile, I = I0 ee(r2Jn”), and 
a triangular temporal variation is used (with the inten- 
sity increasing linearly from zero at the beginning 
of the pulse to a maximum value at t/t, = 0.5, then 
decreasing linearly to zero at t/t, = 1 and then remain- 
ing at zero). The maximum flux at the center of the 
beam, I,, is 1.91 x lOI W mm 2 with a beam diameter 
of 200 pm. Figure 15 shows the solid-liquid interface 
at different times. In contrast to the case of a uniform 
intensity nanosecond pulse (cf. Fig. 10, case 1) the 
melt depth changes considerably in the radial direc- 

Radial Distance, (r/w) 

FIG. 15. Solid-liquid boundary profiles for nonuniform tri- 
angular temporal shape nanosecond pulse. 
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Radial Distance, (r/w) 

FIG. 16. Surface temperature profiles for nonuniform tri- 
angular temporal shape nanosecond pulse. 

tion and the one-dimensional approximation is no 
longer valid. Note that the maximum depth of the 
melt zone increases with time until t/t, = 1.25, and 
then begins to decrease ; the radius begins to decrease 

after tjt, = 0.75. Therefore, the time t/t,, = 1 cannot 
be simply used as the only characteristic time that is 
needed to describe all the complex variations that are 
taking place. The actual temporal variations of the 
heat flux and the properties of the material must also 
be considered. The longer diffusion time from the 
surface to the depth of the melt zone results in a slower 
response to the temporal variation of the incident 
radiation. The result is a radial shrinking of the melt 
region. Figure 16 shows the surface temperature pro- 
files at different times. After t/t, = 0.75, the tem- 
peratures over the entire surface decrease with time 
and a decrease in the radial gradient is observed. Note 
that the radial temperature gradient is two orders of 
nlagnitude smaller than the axial (:-direction) gradi- 
ent. We again note that the actual magnitudes of the 
unsteady heat fluxes arc important and it is difficult 
to generalize the results. 

CONCLUSIONS 

The enthalpy method was modified and applied to 
the problem of rapid melting and solidi~cation of a 
substance resulting from the application of a pulsed 

laser beam. The temperature plateau which usually 
results when the enthalpy method is used was 
eliminated by using energy boundary condition at the 
solid-liquid interface. Good agreement was obtained 
between the predictions and experimental data for the 
melt depth profile in an aluminum target. The results 
of calculations for a range of pulse durations from 
nanoseconds to milliseconds have shown that for 
short pulses the radial dependence of the melt depth 
and the temperature become similar to the radial dis- 
tribution of the intensity of the laser beam. For short 

I. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

1s. 

16. 

17. 

18. 

19. 

pulses with a spatially and temporally uniform inten- 20. 

sity, a simple relation exists between the melt depth, 
the flux and the time. This relation can be used to 
predict the range of energy fluxes which can cause 
melting without material removal at the surface. 
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APPENDIX 

Expressions will be given here for the coefficients in equa- 
tions (14) and (15). Consider a grid point p surrounded by 
four grid points e, w, s, and n as shown in Fig. A 1. For the 
internal grid points except for those located at r = 0, the 
following expressions are used : 

i+l,j 

Tn 

ij 
1 ‘) 4 

w P e 

s 

2 

ij + 1 
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t 
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i- lj 

FIG. Al. Grid points for the numerical method. 
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where k,, is the average thermal conductivity between point 
e and p, etc. It can be expressed as : 

2k k k =_i_p_. 
ep k,+k, 

For points located at r = 0, all the above relations are apph- 
cable except for n, and (I,, which are given by 

k. AZ 
a,=a ~4%~ ‘ w A? 

Equation (A2) is good if both grid points e and p and the 
entire corresponding meshes are in a single phase. However, 
if the two neighboring grid points are separated by a solids- 
liquid interface, then the equivalent thermal conductivity 
between them can be obtained by referring to Fig. AZ. For 
two points at the same z distance (see Fig. A2(a)), the 
expression is 

where k, and k, are the thermal conductivities of the liquid 
and the solid phases at the melting point, respectively. For 
the two grid points at the same radial distance (see Fig. 
A2(b)f we get 

k,, = k&,i(k,,~,, +k,(t -+,)). (A4) 

For the surface grid points (z = 0), the following 
expressions may be used except for the one at Y = 0 : 

kn,: k 
a,,--_.., i 

AZ? 
a =p’, bEq,+h’, 

AZ, 

FIG. A2. Method of calculating thermal 

(b) 

resistance between grid points. 
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For r = 0. the relations 4 = cr, = 2(k,,,Az, +k,2Ar,)/Ar’ 
are used. The other expressions given for the internal grid 

(A5) points are still applicable. 

METHODE ENTHALPIQUE MODIFIEE APPLIQUE%? AlJX FUSIONS ET 
SOLIDIFICATIONS RAPIDES 

R&nn&On &udie la solidification et la fusion rdpides de materiaux types. La technique enthalpique est 
utilide dans une forme explicite aux difftrences finies pour calcuier la position de I’interface solide-liquide 
et la distribution de temp~r~lture dans le mat~riau. La technique a Pt& modifite de faqon ii ne pas ntcessiter 
le ~intien i la temperature de fusion pour I’interface. En utilisant la condition aux limites de I’tnergie B 
I’interface, une nouvelle valeur de la tempkrature du point de la grille est calculCe B chaque pas de temps. 
Les mat&&x entre deux points de grille qui sont de chaque c&6 de i’interface sont deux phases qui ont 
des conducti&& thermiques t&s diffkrentes. Les resistances thermiques du mathriau entre ces deux points 
sont calcul&es en traitant la rtpion comme un mattriau composite. Les effets de durke, la forme temporelle 
et I’intensitt du laser puls6 sont Ptudies pour connaitre la vitesse de propagation du changement de phase 
et la distribution de tempt?rature. Les rCsultats de la prttdiction numirique de la profondeur du bain crC& 
dans un 6chantillon d’aluminium avec un faisceau d’&lectrons de 100 ms sont comparts avec des don&es 

expirimentales et on obtient un bon accord. 

MODIFIZIERT~S ENTHALPIE-VERFAHREN FOR SCHNELLES SCHMELZEN 
UND ERSTARREN 

~~rnrn~nfa~~g-~s werden schnelle Schmelz- und Ers~drrungsvorg~nge untersucht. Der Veriauf der 
Fest-Fliissig-Phasengrenze sowie die Temperaturverteilung im lWateria1 wird mit einer expliziten Finite- 
Differenzen-Form des Enthalpie-Verfahrens berechnet. Das Verfahren wurde so modifiziert, da8 die Tem- 
peratur des Gitterelements, in dem sich die Phasengrenze befindet, nicht konstant bei Schmelztemperatur 
bleiben mul3. Stattdessen wird bei jedem Zeitschritt mit der Randbedingung fiir die Energie an der 
Phasengrenze ein neuer Temperaturwert fiir den Gitterpunkt berechnet. Zwischen den Gitterpunkten, 
welche die Phasengrenze einschliel3en, liegt das Material in zwei Phasen vor und weist daher sehr unter- 
schiedliche Wlrmeleitfihigkeiten auf. Zur Berechnung des Temperaturleitwiderstandes zwischen diesen 
Gitterpunkten wurde der Bereich als Verbundmaterial betrachtet. Die Einfliisse der Dauer, des zeitlichen 
Verlaufs und der Intensitit des Laserpulses auf die Bewegung der Phasengrenze und der Temperatur- 
verteilung wurdcn untersucht. Die Ergebnisse einer numerischen Vorausberechnung der Schmelztiefe in 
Aluminium bei Einwirkung eines Elektronenstrahls von 100 ES Dauer wurden mit experimentellen Daten 

verglichen. Es zeigte sich eine gute Ubereinstimmung. 

HPHMEHEHHE ~0~~~~4~PDBAHHOrO METOAA 3HTA.JIbrIMH K IYIPOqECCY 
CIbICTPOI-0 l-I.JIABJIEHHR H 3ATBEPfiEBAHMII 

A~OTa~S+~ccne~OBanocb 6btCTpOe IInaBneHae H 3aTsepneBaHlle MaTepHarra Msimemi. MeTon 3HTa- 

nb,lHH B RBHOir KOIWIHO-pa3HOCTHOii $OpMe NCnOJE.30BanCll LWR OL'QE,W,eneHHK nOnO~eH1(II rpaHHl,bI 

pa3qena Teepnoe Ten0 - W(IIAKOCTL M. pacnpenenensr TeMnepaTyp B Msimemi. MeTOH ~ona~#~awipo- 

BaJKZIf TaKEiM o6pa3oM, YTO6bI OTCyTCTBOBana HeO6XOAHMOCTb COXpaHWHK TeMlIepaTypbt W&KH, B 

KOTO~O~~ HaxomTcK rpaHsqa pa3nena,no~~oK~~oii w pawoii TebfnepaType nnaaneHan.C ncnonb308a- 

iiHeh4 ycnoeun nn~ln 3neprmi aa rpaHwe pasnena paccwiTbrsdocb ttonoe 3HaYeHue TeMnepaTypbl n 

y3nax ceTKn Ha KaxcnoM BpehieeeoM mare. MaTepaan ~ex~y AB~MR y3nahfrt ce~x~,pacnonome~HbrM~ 

IlO o6e CTOpOHb, rpaWU~~~pPaS~ena,COcfOHT 113 AByX +a3 C CyUWTBeHiiO pa3JWiHbiMR K03~#fi@ff%f- 

TaMH Ten~OnpOBO~~~~. npH O~~Ae~eH~~ Te~OBOrO COIlpOTHBJEHHff COOTBeTCTBylO~aS o6nacTb 

pa~Ma~~B~acb KaK K~M~o~~TH~~ hiaTepua2. kiccneno&z?ocb mmIimie ~~~~bHocT~, +opbfu w 

~HTe"~~B"~~T~ nasepeoro ~~nynbca Ha cKopocTb pa=n~pa~e~~~ ~a3oBoro nepexoiw w pacripene- 

nenBe TeM~epaTyp.Pe3y~bTaTbr q~cneHHor0 0npcneJrearm rny6nHtJ pacn~aBa,o6pa3y~~er~K B anm- 

MBHHeBOi? MBIIJeHU nO~J&?iiCTRlleM 3JEKTpOHHOrO IIMlTy.JE.Ca AJlHTWibHOCTbZO 100 MC,CpaBHKBaJfHCb C 

3KCnepNMeHTaTIbHbIMBnaHHbIMU,R nO,Iy'EHO AX XOpOEIeeCOrlIaCIE. 


